

Monday, 23rd June 2008

Analytical Models of Communication for MPSoCs

Paolo Ienne

Joint work with
Chrysostomos Nicopoulos,
Balaji Raman,
and Patrick Thiran

Real Men (and Women) Simulate!

- Computer Architecture is dominated by simulation
 - ☐ Analytical and statistical models fail in many cases to capture essential system behaviour of microarchitectures
- Embedded System Design is similarly simulationcentric
 - ☐ (Apparently?) strong guarantee of correctness

YET

- Simulation times are often design bottlenecks
- Simulation rarely gives real insight and strong guarantees on the dynamic behaviour of a system

Why Not Look at Analytical Models?

- Mathematical modeling is an attractive alternative
 - ☐ Fast exploration and analysis
 - Closed form
 - □ **Deep insights** valuable for resource saving
 - Can prove or invalidate properties, not just verify
 - ☐ **Efficient** design exploration
 - Exploration encompassing several variables
 simultaneously is feasible and can isolate the effect of each parameter

3

Many Analytical Models

- Synchronous Data Flow graphs (SDF)
 - ☐ Easily model concurrency through data flow representation
- Stochastic Automata Networks (SAN)
 - ☐ Efficient in modeling communicating processes
 - □ Based on Markovian models
- Event Adaptation Functions (Sym TA/s)
 - ☐ Global analysis in heterogeneous systems by coupling (interfacing) local event models
- Real-Time Calculus (RTC)
 - Main focus here

Real-Time Calculus

- Based on Network Calculus
- Mathematical model of networks based on Min-Plus Algebra:
 - ☐ Addition becomes computation of the Minimum
 - Multiplication becomes Addition
- Based on deterministic queuing theory
 - □ Not a statistical method; provides **worst-case bounds** (not averages)
- Does not restricts events to particular models (e.g., periodic)
- Models flow through network elements

5

Seminal Work

- Cruz (UCSD), Le Boudec and Thiran (EPFL), C-S
 Chang (National Tsing Hua University, Taiwan)
 - ☐ Analysis of deterministic flow systems in the Internet
 - ☐ Properties of integrated service networks, scheduling, buffer dimensioning, window flow control, etc.
- Thiele (ETHZ), Chakraborty (NUS)
 - ☐ Hard real-time systems
 - Scheduling analysis and interface-based design
 - □ Network processor architectures
 - Design space exploration
 - Multimedia systems
 - Buffer-sizing, processor-frequency selection, DVFS, etc.

Example: MPEG-2 Decoder

- Real-Time Calculus to model a multimedia SoC
 - ☐ Input: Compressed video clip
 - ☐ Output: Decoded video clip at a pre-specified play-out rate

- Multimedia streams exhibit data-dependent variability
 - □ Variable arrival of items
 - □ Variable execution requirements
- Captured through Variability Characterization Curves (VCC)

M

Processor Frequency Requirements

- Data-dependent variability is fundamentally intertwined with two crucial parameters in the video decoding system
- Play-Out Rate (e.g., 30 frames/s)
 - Requires a data item to be processed within certain time
 - Imposes real-time constraints on the application
- Processor Frequency
 - ☐ Minimum cycles/second required to meet play-out rate
- A naïve design would choose the worst-case frequency f_{max}
 - □ Can we do better?

Introduce a Play-Out Delay

Play-Out Delay

- ☐ Delay after which the output device starts to display the video
- ☐ Intuitively, a non-null play-out delay creates a small reservoir of time ready to be spent when critically needed
- If we choose a near-zero play-out delay
 - □ Processor frequency required to meet play-out rate is f_{max}
- If, however, we accept a small initial play-out delay
 - □ Frequency requirement immediately drops to f_{av}

Real-Time Calculus enables **fast** and **accurate play-out delay estimation**, because it captures the inherent variability of the workload

ç

Play-Out Delay vs. Frequency

- Small increases in play-out delay lead to significant reduction in the processor frequency requirements
- Continuing to increase play-out delay yields diminishing returns
- BUT...

Strong Assumptions: No Processor Stall

PE never stalls due to full play-out buffer

11

- Decreasing the buffer size below the worst-case size provided by the analytical model means that the processor will stall
 - ☐ Such stalls may affect the play-out rate
- One should then increase the processor frequency
 - ☐ Simulation can be used to assess play-out rate

Buffer Size [macroblocks]	Min Processor Frequency to meet Play-Out Rate [MHz]
1453 (= 1.38 MB)	114
1250	114 (play-out rate still maintained)
1000	116
500	117
250	118
100	165

Modelling Processor Stall Time

[Raman, Nicopoulos, Thiran, and Ienne, 2008]

13

Simulation vs. Analytical Model

Worst-Case and Pessimism

- System behaviour is deterministic and results in guaranteed worst-case bounds
 - Modelling determines conservativeness of a solution (e.g., worst-case or smaller play-out buffer)
- Workload is captured empirically in curves that globally capture the behaviour of all sample inputs (e.g., clips) at once
 - They encompass a combined behaviour that may not be captured as accurately by each individual clip (e.g., as in simulation)

Conclusions

- Brute-force simulation is increasingly unfeasible
 - ☐ Systems and applications complexity excludes thorough exploration
- Analytical models are a powerful solution
 - ☐ Can model critical features (e.g., processor stalls)
 - ☐ Can quickly focus the solution space around good solutions
 - ☐ Simulation can validate promising solutions
- They are extremely difficult to develop
 - ☐ Any engineer can easily add a play-out buffer and model processor stalls
 - ☐ To develop some analytical models you need to make a PhD...